Syntheses and characterization of tricarbonyl tungsten complexes containing 1, 1^{\prime}-bis(diphenylphosphino) ferrocene ligand

Sodio C.N. Hsu, Wen-Yann Yeh ${ }^{*}$, Michael Y. Chiang
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, Taiwan

Received 2 November 1994; in revised form 28 December 1994

Abstract

Treatment of $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)_{3}$ with 1, 1^{\prime}-bis(diphenylphosphino)ferrocene (dppf) affords $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}-\right.$ dppf) (1) in 85%) yield. Reaction of 1 with I_{2} produces a seven-coordinated complex $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}\right.$-dppf) (2), which is further oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$ to give $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\mathrm{dppf}(=\mathrm{O})\right)(3)$ in 80% yield. Compound 1 reacts with PMe_{3} forming fac-W(CO) $\left(\eta^{2}-\mathrm{dppf}\right)\left(\mathrm{PMe}_{3}\right)$ (4) in 90% yield. However, reaction of 1 with $\mathrm{PPh}_{2} \mathrm{Cl}$ generates fac-W(CO) $)_{3}\left(\eta^{2}-\mathrm{dppf}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)(5)$ and fac-W(CO) $)_{3}\left(\eta^{2}-\right.$ dppf) $\left(\mathrm{PPh}_{2} \mathrm{OH}\right)$ (6) after separation of the reaction mixture by TLC. The structures of compounds $\mathbf{1}$ and $\mathbf{3}$ have been characterized by X-ray diffraction methods.

Keywords: Tungsten

1. Introduction

The use of ferrocenylphosphines as ligands in organometallic and transition metal cluster complexes has received much attention recently owing to their varied modes of coordination towards metal atoms [1] and possible catalytic activities of many of their complexes [2]. The unique ability of this metalloligand to modify its steric bite by ring twisting and tilting make it capable of adapting to different geometric requirements of metal centers. We have been interested in the potential variability of ferrocenylphosphines compared with the bisphosphine ligands of the type $\mathrm{R}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PR}_{2}$ [3]. Here we report the syntheses and characterization of several tricarbonyl tungsten 1,1'bis(diphenylphosphino)ferrocene (dppf) complexes (Scheme 1).

2. Results and discussion

Treatment of $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)_{3}$ with dppf ligand in acetonitrile solution at $28^{\circ} \mathrm{C}$ affords $\mathrm{fac}-\mathrm{W}(\mathrm{CO})_{3}{ }^{-}$

[^0]$\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) in 85% yield. A closely related compound fac-W $(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppm) (dppm $=$ $\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}_{2}$) was previously prepared and structurally characterized by Darensbourg et al. [4]. The molecular structure of compound 1, shown in Fig. 1, appears as a slightly distorted octahedron. The dppf ligand is chelated to the tungsten atom with a bite angle of $98.05(6)^{\circ}$, which is comparable with those reported for $\mathrm{Mo}(\mathrm{CO})_{4}\left(\eta^{2} \text {-dppf) (95.28(2) }\right)^{\circ}$ [5] and (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Mn}(\mathrm{CO})\left(\eta^{2}\right.$-dppf) $\left(99.3(12)^{\circ}\right)$ [6], but significantly larger than the bite angle of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2}\left(\mathrm{CH}_{2}\right)_{n}$ ligands in $\mathrm{fac}-\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppm) $\left(67.5(1)^{\circ}\right)$ [4], $\mathrm{Mo}(\mathrm{CO})_{4}\left(\eta^{2}-\mathrm{dppm}\right)\left(67.3(1)^{\circ}\right)$ [7], and $\mathrm{Mo}(\mathrm{CO})_{4}{ }^{-}$ (η^{2}-dppe) (80.2(1) $)^{\circ}$ [8]. The two cyclopentadienyl rings are eclipsed and tilted inward by 2.7°, where the $C(25)-P(1)$ and $C(30)-P(2)$ vectors are twisted by 35.5°. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum presents a single resonance at $\delta 22.4$ with ${ }^{183} \mathrm{~W}$ satellite (${ }^{1} J_{\mathrm{W}-\mathrm{P}}=234 \mathrm{~Hz}$), consistent with the facial configuration for compound 1.

Reaction of compound 1 with diiodine results in the oxidative addition of I_{2} to the tungsten center to generate a seven-coordinated complex $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\right.$ dppf) (2). Compound 2 has been previously reported by Baker et al. [9], but prepared by a different process from the reaction of $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}(\mathrm{NCMe})_{2}$ with dppf ligand. Exposure of 2 in benzene solution to air leads

Scheme 1. Syntheses and characterization of tricarbonyl tungsten complexes.
to gradual decomposition and a phosphine oxide complex $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\operatorname{dppf}(=\mathrm{O})\right)(3)$ is isolated in small yield ($<5 \%$). However, compound 3 can be obtained in 80% yield by slow addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (3% in water) in equimolar proportions to a dichloromethane solution

Fig. 1. Molecular structure of compound 1, showing the atomic labeling used in the text.

Fig. 2. Molecular structure of compound 3, showing the atomic labeling used in the text.
of $\mathbf{2}$ at $25^{\circ} \mathrm{C}$ [10]. Oxidation of coordinated phosphines to form coordinated phosphine oxides is known. For instance, Gal and Bolder [11] showed that the reaction of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Rh}\left[\mathrm{Ph}_{2} \mathrm{PC}(\mathrm{S}) \mathrm{NPh}\right]$ with O_{2} in the presence of additional PPh_{3} gave $\mathrm{O}=\mathrm{PPh}_{3}$ and cis- $\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ $\mathrm{Rh}\left(\mathrm{O}_{2}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}(\mathrm{S}) \mathrm{NPh}\right]$, while Schmidt and Yoke [12] reported the autoxidation of $\mathrm{CoCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$ in organic solvents to afford $\mathrm{CoCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\mathrm{O}=\mathrm{PEt}_{3}\right)$ and $\mathrm{CoCl}_{2}\left(\mathrm{O}=\mathrm{PEt}_{3}\right)_{2}$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ presents two distinct resonances at $\delta 50.6$ and $\delta 14.5$, assigned to the phosphoryl ($\mathrm{P}=\mathrm{O}$) and the unoxidized phosphorus atoms, respectively. The molecular structure of $\mathbf{3}$ is illustrated in Fig. 2. Based on the angles subtended at the tungsten atom, the geometry of $\mathbf{3}$ can be described as a distorted capped octahedron [13] with a carbonyl group (C37) in the capping position, two carbonyl (C35, C36) and one phosphorus atom (P 1) in the capped face, and two iodine atoms (I1, I2) and the phosphoryl oxygen atom (O4) in the uncapped face. Fig. 3 shows the projection of compound 3 down the $\mathrm{W}-\mathrm{C}(37)$ vector. The three carbonyl ligands are terminally bonded to the tungsten atom ($\angle \mathrm{W}-\mathrm{C}-\mathrm{O}=175-178^{\circ}$), whereas the $\mathrm{W}-\mathrm{CO}$ bond to the carbon in the capping position is shorter by $0.06 \AA$ than the bonds to the capped face. The phosphoryl group is coordinated to the tungsten atom with distances $\mathrm{W}-\mathrm{O}(4)=2.131(7) \AA$ and $\mathrm{P}(2)-$ $\mathrm{O}(4)=1.509(7) \AA$, suggesting the presence of a phos-phorus-oxygen double bond (cf. $\mathrm{P}=\mathrm{O}=1.521(8)$, $1.506(2)$, and $1.485(8) \AA$ in $\mathrm{W}(\mathrm{CO})_{5}\left(\eta^{1}-(\mathrm{O}) \mathrm{PPh}_{2^{-}}\right.$ $\left.\mathrm{CHPPh}_{3}\right)$ [14], $\quad \mathrm{MoCl}_{3}(\mathrm{O})\left(\eta^{2}-\mathrm{PEt}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}_{2}\right)$ [15], and $\mathrm{CpFe}(\mathrm{CO}) \mathrm{I}\left(\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right)$ [10], respectively) and an oxygen-tungsten dative bond (cf. $\mathrm{W}-\mathrm{O}=2.200(7) \AA$ in $\mathrm{W}(\mathrm{CO})_{5}\left(\eta^{1}-(\mathrm{O}) \mathrm{PPh}_{2} \mathrm{CHPPh}_{3}\right)$ [14]). The enlarged angle $\angle \mathrm{W}-\mathrm{O}(4)-\mathrm{P}(2)=160.2(5)^{\circ}$ in comparison with other complexes containing η^{2} $\mathrm{dppm}(\mathrm{O})$ or η^{2}-dppe(O) ligands (ca. 140°) $[15,16]$ is

Fig. 3. Projection of compound $\mathbf{3}$ down the $\mathrm{W}-\mathrm{C}(37)$ bond, showing the capped octahedral coordination about the tungsten atom.
likely due to the steric demand of the ferrocene group.
The acetonitrile moiety in 1 can be readily replaced by the phosphine ligands. For example, compound 1 reacts with PMe_{3} at $28^{\circ} \mathrm{C}$ affording fac-W $(\mathrm{CO})_{3}\left(\eta^{2}-\right.$ dppf) $\left(\mathrm{PMe}_{3}\right)(4)$ in 90% yield. The facial geometry is indicated by the IR band pattern observed in the CO stretching region $[4,17]$, which is comparable with that recorded for compound $\mathbf{1}$. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 is also consistent with the formation of the facial isomer, showing a doublet signal at $\delta 18.3\left({ }^{2} J_{\mathrm{P}-\mathrm{P}}=25\right.$ Hz) and a triplet signal at $\delta-48.38$, assigned to the η^{2}-dppf and PMe_{3} ligands, respectively. The meridional isomer, which should display three sets of multiplet signals, is not observed.

Treating compound 1 with $\mathrm{PPh}_{2} \mathrm{Cl}$ and subsequent separation of the reaction mixture by thin layer chromatography (TLC (silica gel)), however, leads to fac-$\mathrm{W}(\mathrm{CO})_{3}\left(\eta^{2}-\mathrm{dppf}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)$ (5) and $\mathrm{fac}-\mathrm{W}(\mathrm{CO})_{3}\left(\eta^{2}-\right.$ dppf) $\left(\mathrm{PPh}_{2} \mathrm{OH}\right)(6)$ in 34% and 32% yield, respectively. Since the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ following addition of $\mathrm{PPh}_{2} \mathrm{Cl}$ under nitrogen affords a triplet ($\delta 98.02$) and a doublet ($\delta 17.16,{ }^{2} J_{\mathrm{P}-\mathrm{P}}=22 \mathrm{~Hz}$) signal, both accompanied by ${ }^{183} \mathrm{~W}$ satellites, the complex $f a c-\mathrm{W}(\mathrm{CO})_{3}\left(\eta^{2}-\mathrm{dppf}\right)\left(\mathrm{PPh}_{2} \mathrm{Cl}\right)$ (7) is probably formed initially, although attempts to isolate 7 in pure form have been unsuccessful. After adding a trace amount of water to the NMR tube, the signals corresponding to 6 are observed. It appears that 6 is derived from hydrolysis of 7 , whereas the mechanism leading to 5 remains unclear. The IR spectra of compounds 5 and 6 in the CO stretching region are almost identical and in close agreement with the pattern expected for the
facial form. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 shows a multiplet in the range $\delta 7.70-7.10$ for the phenyl protons, four broad signals between $\delta 4.49$ and 4.01 for the Cp protons, and a doublet at $\delta 5.75$ with ${ }^{1} J_{\mathrm{P}-\mathrm{H}}=317 \mathrm{~Hz}$ for the proton bonded to the phosphorus atom. The ${ }^{31} \mathrm{P}$ NMR spectrum of 5 presents a doublet of triplet at $\delta 9.04$ with ${ }^{2} J_{\mathrm{P}-\mathrm{P}}=19.5 \mathrm{~Hz}$ and ${ }^{1} J_{\mathrm{P}-\mathrm{H}}=317 \mathrm{~Hz}$, assigned to the $\mathrm{PPh}_{2} \mathrm{H}$ group, and a doublet at $\delta 18.79$, assigned to the dppf group. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ resembles that of 5 in the phenyl and Cp protons resonance regions, but the POH signal is not found, presumably due to fast exchange with moisture in the solvent. However, the fast atom bombardment (FAB) mass spectrum of 6 does show the molecular ion signals at $m / z=1024\left({ }^{184} \mathrm{~W}\right)$, and a strong broad IR band at $3500 \mathrm{~cm}^{-1}$, assigned to $\nu(\mathrm{O}-$ H), is observed, consistent with the proposed formulation. The downfield ${ }^{31} \mathrm{P}$ shift of $\mathrm{PPh}_{2} \mathrm{OH}$ ligand (δ 101.8) in comparison with $\mathrm{PPh}_{2} \mathrm{H}$ (δ 9.04) may be attributed to the more electron-withdrawing hydroxyl group [18].

3. Experimental section

3.1. General procedures

All manipulations were performed on a doublemanifold Schlenk line under an atmosphere of dry nitrogen, or in a nitrogen-filled glove box. Solvents were distilled over appropriate drying agents under a nitrogen atmosphere. $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)_{3}[19]$ and dppf [20] were prepared by literature methods. $\mathrm{PMe}_{3}(1.0 \mathrm{M}$ in toluene) and $\mathrm{PPh}_{2} \mathrm{Cl}$ were purchased from Aldrich and were used without further purification. Thin-layer chromatographic plates were prepared from silica gel (Merck). Infrared spectra were recorded in a 0.10 mm CaF_{2} solution cell on a Hitachi I-2001 IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained on a Varian VXR- 300 spectrometer at 300 MHz and 121.4 MHz , respectively. FAB mass spectra were recorded by using a VG-5022 mass spectrometer. Elementary analyses were performed at the National Science Council Regional Instrumentation Center, National ChungHsing University, Taichung.

3.2. Preparation of $\mathrm{fac}-\mathrm{W}\left(\mathrm{CO}_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}-\right.\right.$ dppf $)$ (1)

$\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)_{3}(0.554 \mathrm{~g}, 1.42 \mathrm{mmol})$ and dppf ($0.79 \mathrm{~g}, 1.43 \mathrm{mmol}$) were placed in a 50 ml Schlenk flask containing a magnetic stirring bar. The flask was capped with a rubber septum stopper, evacuated, and backfilled with a nitrogen atmosphere. 15 ml of dry acetonitrile was added to the flask and the mixture was stirred for 5 h at ambient temperature, forming a yellow precipitate. The supernatant was removed via a
cannula, and the product washed with 50 ml of diethyl ether and then dried under vacuum, affording fac-$\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) ($\left.1.041 \mathrm{~g}, 1.20 \mathrm{mmol}\right)$ in 85% yield. Mass spectroscopy (FAB) $m / z: 863\left(\mathrm{M}^{+}\right.$, $\left.{ }^{184} \mathrm{~W}\right), 822\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CN}\right), 822-28 n(n=1-3)$. IR (1,2- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$): $\nu(\mathrm{CO}) 1930 \mathrm{vs}, 1836 \mathrm{~s}, 1812 \mathrm{~s} \mathrm{~cm}{ }^{-1}{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 22.40\left(\mathrm{~s}, J_{\mathrm{W}-\mathrm{P}}=234 \mathrm{~Hz}\right)$ ppm. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 1.99$ (s, $3 \mathrm{H}, \mathrm{NCMe}$), $4.32(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.43$ ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$), $7.30-7.70(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm}$. Anal. found N , 1.87; C, 53.67; H, 3.67. $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{FeW}$ calc. N , 1.62; C, 54.26; H, 3.62.

3.3. Reaction of $W\left(\mathrm{CO}_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}-\right.\right.$ dppf $)$ (1) with I_{2}

$\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) $(0.05 \mathrm{~g}, 0.058 \mathrm{mmol})$ and dichloromethane (10 ml) were added to a 50 ml Schlenk flask equipped with a magnetic stirring bar and a rubber serum stopper. The flask was placed in an ice bath, and a solution of iodine ($0.015 \mathrm{~g}, 0.059 \mathrm{mmol}$) in benzene (5 ml) was added dropwise over a period of 2 h . Hexane (50 ml) was then introduced into the flask, giving an orange-red solid of the known $\mathrm{W}(\mathrm{CO})_{3^{-}}$ $(\mathrm{I})_{2}\left(\eta^{2}-\mathrm{dppf}\right)(2)[9](0.058 \mathrm{~g}, 0.054 \mathrm{mmol}, 93 \%)$.

3.4. Reaction of $W(C O)_{3}(I)_{2}\left(\eta^{2}\right.$-dppf) (2) with $\mathrm{H}_{2} \mathrm{O}_{2}$

$\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\mathrm{dppf}\right)(2)(0.058 \mathrm{~g}, 0.054 \mathrm{mmol})$ and dichloromethane (10 ml) were placed in a 50 ml Schlenk flask equipped with a magnetic stirring bar and a rubber serum stopper. An aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (3%, $50 \mu \mathrm{l}$) was then added with a micro-syringe. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 h . After adding 30 ml of dry hexane, the reaction mixture was allowed to stand at $-20^{\circ} \mathrm{C}$ for 2 h , forming air-stable greenishred crystals of $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\mathrm{dppf}(=\mathrm{O})\right)(3)(0.049 \mathrm{~g}$, $0.045 \mathrm{mmol}, 84 \%$). Mass spectroscopy (FAB) m / z : $1036\left(\mathrm{M}^{+}-\mathrm{CO}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2020 \mathrm{~m}, 1954 \mathrm{~s}$, $1892 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 50.63(\mathrm{~s})$, 14.5 (br, $\left.J_{\mathrm{W}-\mathrm{P}}=210 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $20^{\circ} \mathrm{C}$): 3.72 (br, 2H), 4.15 (br, 2H), 4.56 (br, 2 H), 4.83 (br, 2H, C $5_{5} \mathrm{H}_{4}$), $7.00-8.20(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm}$.
3.5. Reaction of fac- $\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) with PMe_{3}

Fac-W(CO) $)_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) ($0.03 \mathrm{~g}, 0.035$ $\mathrm{mmol})$ and 10 ml of dichloromethane were added to a 50 ml Schlenk flask equipped with a magnetic stirring bar and a rubber serum stopper. $\mathrm{PMe}_{3}(132 \mu \mathrm{l}, 0.132$ mmol) was added with a micro-syringe, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , giving a yellow precipitate. The supernatant was removed by pipette, and the product was washed with fresh hexanes ($3 \times 3 \mathrm{ml}$) and then dried under vacuum for $5 \mathrm{~h} . \mathrm{Fac}$-W (CO) 3^{-} $\left(\mathrm{PMe}_{3}\right)\left(\eta^{2}-\mathrm{dppf}\right)(4)(0.029 \mathrm{~g}, 0.032 \mathrm{mmol})$ was isolated
in 90% yield. Mass spectroscopy (FAB) $m / z: 898\left(\mathrm{M}^{+}\right.$, ${ }^{184} \mathrm{~W}$), $869\left(\mathrm{M}^{+}-\mathrm{CO}\right), 822\left(\mathrm{M}^{+}-\mathrm{PMe}_{3}\right), 822-28 n(n$ $=1-3)$. IR ($1,2-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$): $\nu(\mathrm{CO}) 1932 \mathrm{vs}, 1836 \mathrm{~s}, 1824 \mathrm{~s}$ $\mathrm{cm}^{-1} \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right):-48.38\left(\mathrm{t}, J_{\mathrm{P}-\mathrm{P}}\right.$ $\left.=25 \mathrm{~Hz}, J_{\mathrm{W}-\mathrm{P}}=232 \mathrm{~Hz}\right), 18.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=25 \mathrm{~Hz}, J_{\mathrm{W}-\mathrm{P}}\right.$ $=214 \mathrm{~Hz}) \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 1.01(\mathrm{~d}, 9 \mathrm{H}$, $J_{\mathrm{P}-\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{PMe}_{3}$), 4.1-4.4 (m, 8H, C $\mathrm{C}_{5} \mathrm{H}_{4}$), 7.30-7.70 ($\mathrm{m}, 20 \mathrm{H}, \mathrm{Ph}$) ppm. Anal. found C, 52.31; H, 4.28. $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{FeW}$ calc. C, 53.48; H, 4.15.

3.6. Reaction of fac-W(CO) $)_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) with $\mathrm{PPh}_{2} \mathrm{Cl}$

Fac-W $(\mathrm{CO})_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1) ($0.03 \mathrm{~g}, 0.035$ mmol) and dichloromethane (10 ml) were added into a 50 ml Schlenk flask equipped with a magnetic stirring bar and a rubber serum stopper. $\mathrm{PPh}_{2} \mathrm{Cl}(0.088 \mathrm{~g}, 0.4$ mmol) was added with a micro-syringe. The mixture was stirred at room temperature for 10 h . The volatile materials were removed under vacuum, and the residue subjected to TLC, eluting with dichloromethane/ hexane ($1: 1, \mathrm{v} / \mathrm{v}$). Fac-W(CO) $)_{3}\left(\eta^{2}-\mathrm{dppf}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)(5)$ $(0.012 \mathrm{~g}, 0.012 \mathrm{mmol}, 34 \%)$ and $\mathrm{fac}-\mathrm{W}(\mathrm{CO})_{3}\left(\eta^{2}-\right.$ $\mathrm{dppf})\left(\mathrm{PPh}_{2} \mathrm{OH}\right)(6)(0.011 \mathrm{~g}, 0.011 \mathrm{mmol}, 32 \%)$ were isolated from the first and second yellow bands, respectively.

Compound 5: mass spectroscopy (FAB) $m / z: 1008$ $\left(\mathrm{M}^{+},{ }^{184} \mathrm{~W}\right), 980\left(\mathrm{M}^{+}-\mathrm{CO}\right), 822\left(\mathrm{M}^{+}-\mathrm{PPh}_{2} \mathrm{H}\right), 822-$ $28 n(n=1-3)$ IR (KBr): $\nu(\mathrm{CO})$ 1936vs, 1846s, 1838 sh $\mathrm{cm}^{-1} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 9.04\left(\mathrm{t}, J_{\mathrm{P}-\mathrm{P}}=\right.$

Table 1
Crystal data and refinement details for compound 1 and compound 3

	1	3
Formula	$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{FeW}$	$\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{FeW}$
Crystal system	monoclinic	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 2_{1} / \mathrm{c}$
$a(\AA)$	12.015(9)	10.219(3)
$b(\AA)$	21.497(5)	18.539(4)
$c(\AA)$	13.383(3)	22.424(7)
β (deg)	97.11(3)	98.94(3)
$V\left(\AA^{3}\right)$	3546(2)	4196(2)
Z	4	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.617	1.728
$F(000)$	1704.00	2072.00
Radiation $\lambda(\AA)$	Mo K $\alpha 0.71069$	Mo K $\alpha 0.71069$
T (K)	297	297
$\mu\left(\mathrm{cm}^{-1}\right)$	38.44	46.69
Scan parameter	$1.21+0.30 \tan \theta$	$1.10+0.30 \tan \theta$
$2 \theta_{\text {max }}$ (deg)	50.0	50.0
No. of unique data	5577	5868
No. of data with $I>3 \sigma(I)$	4365	4028
$R_{F}{ }^{\text {a }}$	0.032	0.041
$R_{w}{ }^{\text {a }}$	0.029	0.055
Goodness of fit	1.96	1.41

$R_{F}=\sum_{2}\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{0}\right| ; \quad R_{w}=\left\{\sum\left[\omega\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}\right] /\right.\right.$ $\left.\Sigma \omega\left|F_{0}\right|^{2}\right\}^{1 / 2}$.
$\left.19.5 \mathrm{~Hz}, J_{\mathrm{W}-\mathrm{P}}=224 \mathrm{~Hz}\right), 18.79\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19.5 \mathrm{~Hz}\right.$, $\left.J_{\text {W-P }}=229 \mathrm{~Hz}\right)$ ppm. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): 4.01(\mathrm{~s}$, $2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.75$ (d, $1 \mathrm{H}, J_{\mathrm{P}-\mathrm{H}}=317 \mathrm{~Hz}$), 7.10-7.70 (m, 30H, Ph) ppm.

Compound 6: mass spectroscopy (FAB) $\mathrm{m} / \mathrm{z}: 1024$ $\left(\mathrm{M}^{+},{ }^{184} \mathrm{~W}\right), 996\left(\mathrm{M}^{+}-\mathrm{CO}\right), 822\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{OH}\right), 822-28 n$ ($n=1-3$). IR (KBr): $\nu(\mathrm{O}-\mathrm{H}) 3500 \mathrm{br}, \nu(\mathrm{CO}) 1936 \mathrm{vs}$, 1842s, 1834sh cm ${ }^{-1} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2} ; 20^{\circ} \mathrm{C}\right)$:

Table 2
Selected atomic coordinates of compound 1

Atom	x	y	z	$B_{\text {eq }}$
W(1)	$0.22666(2)$	0.15117(1)	-0.17112(2)	2.384(6)
$\mathrm{Fe}(1)$	$-0.13759(8)$	$0.11166(4)$	$-0.25139(7)$	2.67 (2)
$\mathrm{P}(1)$	0.0543(1)	$0.20570(8)$	-0.1215(1)	2.41(4)
$\mathrm{P}(2)$	$0.1254(1)$	$0.07654(8)$	-0.2985(1)	2.52(4)
$\mathrm{O}(1)$	$0.4548(4)$	0.0893(3)	-0.1999(4)	5.9(2)
$\mathrm{O}(2)$	0.2445(5)	0.0644(2)	$0.0101(3)$	5.1(1)
O(3)	0.3839(4)	0.2412(3)	-0.0405(4)	5.4(2)
$\mathrm{O}(4)$	$0.5497(7)$	0.0343(4)	1.0102(6)	6.0(0)
N(1)	0.2071(4)	$0.2145(2)$	-0.2974(4)	2.8(1)
C(1)	0.0573 (5)	0.2301(3)	0.0066(4)	2.7(2)
C(2)	0.1289(6)	0.2027(3)	0.0792(5)	3.5(2)
C(3)	0.1249 (6)	$0.2200(4)$	$0.1761(5)$	4.3(2)
C(4)	0.0546 (7)	$0.2636(4)$	0.2004(5)	4.3(2)
C(5)	-0.0189(6)	$0.2921(4)$	$0.1287(5)$	4.5(2)
C(6)	-0.0168(6)	0.2751(4)	$0.0322(5)$	4.0(2)
C(7)	0.0236(5)	0.2810 (3)	-0.1827(4)	2.6(1)
C(8)	-0.0600(6)	0.2919(3)	-0.2601(5)	3.2(2)
C(9)	-0.0712(7)	0.3498(4)	-0.3039(5)	4.6 (2)
$\mathrm{C}(10)$	$-0.0001(7)$	0.3967(4)	-0.2731(6)	5.2(2)
C(11)	$0.0845(7)$	0.3866(4)	-0.1983(6)	5.0(2)
C(12)	$0.0965(6)$	0.3286 (3)	-0.1541(5)	4.1(2)
C(13)	0.1907(6)	$0.0824(3)$	-0.4129(4)	2.8(2)
C(14)	0.2983(6)	$0.0596(3)$	-0.4147(5)	4.2(2)
C(15)	0.3510 (7)	$0.0663(4)$	-0.4963(7)	5.4(2)
C(16)	0.2992(9)	$0.0955(5)$	-0.5776(6)	6.1(3)
C(17)	0.1923(8)	0.1176(4)	-0.5769(6)	5.8(3)
C(18)	$0.1376(6)$	$0.1113(4)$	-0.4944(5)	4.0(2)
$\mathrm{C}(19)$	0.1288(5)	-0.0075(9)	-0.2780(5)	2.8(2)
C(20)	0.1331(6)	-0.0313(3)	-0.1841(5)	3.9(2)
C(21)	0.1284(8)	-0.0945(4)	-0.1685(6)	5.3(2)
C(22)	$0.1202(7)$	-0.1348(3)	-0.2460 (6)	4.7(2)
C(23)	$0.1172(6)$	-0.1126(3)	-0.3393(6)	4.3(2)
C(24)	$0.1190(6)$	-0.0500(3)	-0.3558(5)	3.5(2)
C(25)	-0.0736(5)	$0.1602(3)$	-0.1325(4)	2.4(1)
C(26)	-0.0699(6)	0.0951(3)	-0.1117(4)	3.0(2)
C(27)	-0.1808(6)	0.0721 (3)	-0.1257(5)	3.8(2)
C(28)	-0.2534(6)	$0.1211(4)$	-0.1540(5)	3.6(2)
C(29)	-0.1896(6)	$0.1753(3)$	-0.1568(5)	3.3(2)
C(30)	-0.0230(5)	0.0884 (3)	-0.3413(4)	2.5(1)
C(31)	-0.1117(6)	$0.0435(3)$	-0.3496(5)	3.8(2)
C(32)	$-0.2128(6)$	0.0749(4)	-0.3805(5)	4.3(2)
C(33)	-0.1886(6)	0.1384(4)	-0.3923(5)	3.8(2)
C(34)	-0.0723(5)	0.1458(3)	-0.3693(4)	$3.0(2)$
C(35)	0.1687(7)	0.2881 (4)	-0.4454(5)	5.6(2)
C(36)	$0.1910(6)$	0.2472(3)	-0.3623(5)	3.3(2)
C(37)	0.3677(6)	0.1133(4)	-0.1959(5)	3.8(2)
C(38)	0.2355 (6)	$0.0962(3)$	-0.0587(5)	3.2(2)
C(39)	0.3231(6)	0.2094(3)	-0.0893(5)	3.2(2)

Table 3
Selected bond distances and bond angles for 1

Bond distance (\AA)			
$\mathrm{W}-\mathrm{P}(1)$	$2.547(2)$	$\mathrm{W}-\mathrm{P}(2)$	$2.576(2)$
$\mathrm{W}-\mathrm{N}(1)$	$2.204(5)$	$\mathrm{W}-\mathrm{C}(37)$	$1.948(8)$
$\mathrm{W}-\mathrm{C}(38)$	$1.946(7)$	$\mathrm{W}-\mathrm{C}(39)$	$1.966(7)$
$\mathrm{N}(1)-\mathrm{C}(36)$	$1.139(8)$	$\mathrm{C}(37)-\mathrm{O}(1)$	$1.175(8)$
$\mathrm{C}(38)-\mathrm{O}(2)$	$1.166(7)$	$\mathrm{C}(39)-\mathrm{O}(3)$	$1.156(8)$
$\mathrm{C}(36)-\mathrm{C}(35)$	$1.446(9)$	$\mathrm{Fe}-\mathrm{C}(25)$	$2.018(6)$
$\mathrm{Fe}-\mathrm{C}(26)$	$2.034(6)$	$\mathrm{Fe}-\mathrm{C}(27)$	$2.060(7)$
$\mathrm{Fe}-\mathrm{C}(28)$	$2.063(7)$	$\mathrm{Fe}-\mathrm{C}(29)$	$2.043(7)$
$\mathrm{Fe}-\mathrm{C}(30)$	$2.029(6)$	$\mathrm{Fe}-\mathrm{C}(31)$	$2.048(7)$
$\mathrm{Fe}-\mathrm{C}(32)$	$2.058(7)$	$\mathrm{Fe}-\mathrm{C}(33)$	$2.053(7)$
$\mathrm{Fe}-\mathrm{C}(34)$	$2.033(6)$		
Bondangle $($ deg $)$			
$\mathrm{P}(1)-\mathrm{W}-\mathrm{P}(2)$	$98.05(6)$	$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(37)$	$173.6(2)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(38)$	$91.7(2)$	$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(39)$	$89.6(2)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{N}(1)$	$85.4(1)$	$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(37)$	$88.1(2)$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(38)$	$98.2(2)$	$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(39)$	$170.3(2)$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{N}(1)$	$81.2(1)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(25)$	$116.0(2)$
$\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(30)$	$119.7(2)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(37)$	$97.3(2)$
$\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(38)$	$176.9(2)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(39)$	$93.5(2)$
$\mathrm{N}(1)-\mathrm{C}(36)-\mathrm{C}(35)$	$178.9(8)$	$\mathrm{C}(37)-\mathrm{W}-\mathrm{C}(38)$	$85.7(3)$
$\mathrm{C}(37)-\mathrm{W}-\mathrm{C}(39)$	$84.5(3)$	$\mathrm{C}(38)-\mathrm{W}-\mathrm{C}(39)$	$87.5(3)$
$\mathrm{W}-\mathrm{C}(37)-\mathrm{O}(1)$	$172.5(6)$	$\mathrm{W}-\mathrm{C}(38)-\mathrm{O}(2)$	$177.4(6)$
$\mathrm{W}-\mathrm{C}(39)-\mathrm{O}(3)$	$176.4(6)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1)$	$118.0(2)$
$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(7)$	$113.8(2)$	$\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(13)$	$109.1(2)$
$\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(19)$	$120.6(2)$	$\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(36)$	$176.4(6)$

$17.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=28 \mathrm{~Hz}, J_{\mathrm{W}-\mathrm{P}}=230 \mathrm{~Hz}\right), 101.8\left(\mathrm{t}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $\left.28 \mathrm{~Hz}, J_{\mathrm{W}-\mathrm{P}}=265 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right)$: $4.03(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$), $7.10-7.60(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}) \mathrm{ppm}$. Anal. found C, 57.86; H, 4.36. $\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{FeW}$ calc. C, 57.45; H, 3.84.

3.7. Structure determination for 1

A crystal of fac-W(CO) $)_{3}\left(\mathrm{NCCH}_{3}\right)\left(\eta^{2}\right.$-dppf) (1), with appropriate dimensions $0.48 \times 0.5 \times 0.5 \mathrm{~mm}^{3}$, was mounted on a glass fiber and aligned on the Rigaku AFC7S diffractometer. Diffraction data were collected with graphite monochromated Mo-K α radiation using $\theta / 2 \theta$ scan mode. Lattice parameters were determined from 24 randomly selected reflections with 2θ ranging from 10.6° to 17.9°. All data were corrected for Lorentz and polarization effects and for the effects of absorption. The structure was solved by the direct method [21] and refined by least-square cycles. All non-hydrogen atoms were refined anisotropically; the hydrogen atoms were included but not refined. The calculation was performed using the TEXSAN crystallographic software package of the Molecular Structure Corporation [22]. The data collection and refinement parameters are collected in Table 1. Atomic positional parameters are given in Table 2. Selected bond lengths and angles are included in Table 3.

3.8. Structure determination for 3

A brown prism crystal of $\mathrm{W}(\mathrm{CO})_{3}(\mathrm{I})_{2}\left(\eta^{2}-\mathrm{dppf}(=\mathrm{O})\right)$ (3), with approximate dimensions $0.20 \times 0.20 \times 0.16$ mm^{3}, was mounted on a glass fiber and aligned on the Rigaku AFC7S diffractometer. Diffraction data were collected with graphite monochromated Mo-K α radiation using $\theta / 2 \theta$ scan mode. Lattice parameters were determined from 25 randomly selected reflections with 2θ ranging from 11.3° to 28.6°. All data were corrected for Lorentz and polarization effects and for the effects

Table 4
Selected atomic coordinates of compound 3

Atom	x	y	z	$B_{\text {eq }}$
W(1)	0.41787(5)	0.10338 (3)	0.75131(2)	2.75(1)
I(1)	0.47452(9)	$0.17747(5)$	0.86440(3)	4.14(2)
I(2)	0.53830 (9)	0.22419(4)	$0.70102(4)$	4.18(2)
$\mathrm{Fe}(1)$	0.7562(2)	-0.03249(4)	$0.66754(7)$	$3.20(4)$
P (1)	$0.4436(3)$	$0.0511(2)$	0.6478(1)	2.92(7)
P (2)	0.7241(3)	0.0137(2)	0.8060(1)	2.79 (6)
O(1)	0.198(1)	0.2234(6)	0.7365(5)	6.8(3)
O(2)	0.3387(9)	-0.0114(5)	0.8410(5)	5.8(3)
O(3)	0.1423(1)	$0.0395(6)$	$0.7022(5)$	6.3 (3)
O(4)	$0.6108(7)$	0.0579(4)	0.7737(3)	2.8(2)
C(1)	0.360(1)	-0.0354(6)	$0.6288(5)$	3.5(3)
C(2)	0.344(1)	$-0.0846(7)$	$0.6735(6)$	4.3(3)
C(3)	0.284(1)	-0.1497(8)	$0.6597(7)$	5.3 (4)
C(4)	0.239(2)	-0.1660(8)	0.6000(8)	6.3(5)
C(5)	0.253(2)	-0.1189(9)	$0.5548(7)$	6.2(4)
C(6)	0.314(1)	-0.0534(8)	0.5708(6)	5.1(4)
C(7)	0.607(1)	$0.0361(6)$	$0.6303(5)$	3.3(3)
C(8)	0.724(1)	$0.0750(7)$	0.6501(5)	3.5(3)
C(9)	0.827(1)	0.0512(7)	0.6200(6)	4.3(3)
C(10)	0.771(1)	-0.0054(8)	$0.5808(5)$	4.7(4)
C(11)	0.640(1)	-0.0163(7)	0.5866(5)	3.7(3)
C(12)	0.772(1)	-0.0531(6)	0.7569(5)	3.3(3)
C(13)	0.901(1)	-0.0584(7)	0.7373(5)	$3.5(3)$
C(14)	0.891(2)	-0.1136(8)	$0.6932(6)$	5.1(4)
C(15)	0.764(2)	$-0.1400(7)$	0.6580(6)	4.5(3)
C(16)	0.690(1)	-0.1057(7)	0.7230(5)	4.0(3)
C(17)	0.685(1)	-0.0315(7)	0.8722(4)	3.13)
C(18)	0.683(1)	$0.0085(7)$	0.9238(6)	4.6 (3)
C(19)	0.650(2)	-0.0236(9)	$0.9755(6)$	5.4(4)
C(20)	0.622(2)	-0.095(1)	$0.9745(7)$	7.0(5)
C(21)	$0.620(2)$	-0.1346(8)	$0.9227(7)$	6.2(4)
C(22)	0.651(1)	-0.1039(7)	0.8719(6)	4.5(3)
C(23)	0.865(1)	$0.0702(7)$	0.8293(5)	$3.5(3)$
C(24)	0.976(1)	$0.0442(8)$	$0.8646(6)$	5.0 (4)
C(25)	1.087(1)	0.089(1)	$0.8812(7)$	6.5(5)
C(26)	1.082(2)	0.158(1)	$0.8626(8)$	6.0 (5)
C(27)	0.971(2)	$0.1854(8)$	$0.8285(7)$	6.1(4)
C(28)	0.861(1)	$0.1423(7)$	0.8104(6)	4.5(3)
C(29)	0.368(1)	$0.1082(7)$	$0.5847(5)$	3.7(3)
C(30)	0.447(1)	$0.1403(6)$	0.5469(5)	4.4(3)
C(31)	0.390(2)	$0.1843(8)$	$0.5003(6)$	6.0(4)
C(32)	$0.253(2)$	0.1969(9)	0.4922 (6)	7.3(5)
C(33)	0.178(2)	$0.1667(9)$	$0.5302(8)$	6.9(5)
C(34)	$0.237(2)$	$0.1224(9)$	$0.5768(6)$	5.9(4)
C(35)	0.278(1)	$0.1800(8)$	$0.7427(5)$	4.4(3)
C(36)	0.370(1)	$0.0297(8)$	0.8093 (6)	$4.2(3)$
C(37)	0.247(1)	$0.0629(8)$	$0.7182(6)$	4.5(3)

Table 5
Selected bond distances and bond angles for 3

Bond distance (A)			
W-I(1)	$2.8629(9)$	$\mathrm{W}-\mathrm{I}(2)$	$2.869(1)$
$\mathrm{W}-\mathrm{P}(1)$	$2.566(3)$	$\mathrm{W}-\mathrm{O}(4)$	$2.131(7)$
$\mathrm{W}-\mathrm{C}(35)$	$2.01(1)$	$\mathrm{W}-\mathrm{C}(36)$	$2.00(1)$
$\mathrm{W}-\mathrm{C}(37)$	$1.94(1)$	$\mathrm{O}(4)-\mathrm{P}(2)$	$1.509(7)$
$\mathrm{C}(35)-\mathrm{O}(1)$	$1.14(1)$	$\mathrm{C}(36)-\mathrm{O}(2)$	$1.12(1)$
$\mathrm{C}(37)-\mathrm{O}(3)$	$1.16(1)$	$\mathrm{Fe}-\mathrm{C}(7)$	$2.06(1)$
$\mathrm{Fe}-\mathrm{C}(8)$	$2.05(1)$	$\mathrm{Fe}-\mathrm{C}(9)$	$2.08(1)$
$\mathrm{Fe}-\mathrm{C}(10)$	$2.04(1)$	$\mathrm{Fe}-\mathrm{C}(11)$	$2.03(1)$
$\mathrm{Fe}-\mathrm{C}(12)$	$2.02(1)$	$\mathrm{Fe}-\mathrm{C}(13)$	$2.04(1)$
$\mathrm{Fe}-\mathrm{C}(14)$	$2.06(1)$	$\mathrm{Fe}-\mathrm{C}(15)$	$2.03(1)$
$\mathrm{Fe}-\mathrm{C}(16)$	$2.03(1)$		
Bond angle $($ deg $)$			
$\mathrm{I}(1)-\mathrm{W}-\mathrm{I}(2)$	$86.19(3)$	$\mathrm{I}(1)-\mathrm{W}-\mathrm{P}(1)$	$161.32(7)$
$\mathrm{I}(1)-\mathrm{W}-\mathrm{O}(4)$	$85.9(2)$	$\mathrm{I}(1)-\mathrm{W}-\mathrm{C}(35)$	$77.8(4)$
$\mathrm{I}(1)-\mathrm{W}-\mathrm{C}(36)$	$77.7(4)$	$\mathrm{I}(1)-\mathrm{W}-\mathrm{C}(37)$	$124.7(4)$
$\mathrm{I}(2)-\mathrm{W}-\mathrm{P}(1)$	$80.15(7)$	$\mathrm{I}(2)-\mathrm{W}-\mathrm{O}(4)$	$87.9(2)$
$\mathrm{I}(2)-\mathrm{W}-\mathrm{C}(35)$	$75.7(4)$	$\mathrm{I}(2)-\mathrm{W}-\mathrm{C}(36)$	$162.3(4)$
$\mathrm{I}(2)-\mathrm{W}-\mathrm{C}(37)$	$124.6(4)$	$\mathrm{P}(1)-\mathrm{W}-\mathrm{O}(4)$	$80.9(2)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(35)$	$110.7(3)$	$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(36)$	$113.6(4)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(37)$	$73.8(4)$	$\mathrm{O}(4)-\mathrm{W}-\mathrm{C}(35)$	$157.5(4)$
$\mathrm{O}(4)-\mathrm{W}-\mathrm{C}(36)$	$83.6(4)$	$\mathrm{O}(4)-\mathrm{W}-\mathrm{C}(37)$	$133.1(4)$
$\mathrm{C}(35)-\mathrm{W}-\mathrm{C}(36)$	$107.6(5)$	$\mathrm{C}(35)-\mathrm{W}-\mathrm{C}(37)$	$69.4(6)$
$\mathrm{C}(36)-\mathrm{W}-\mathrm{C}(37)$	$71.8(5)$	$\mathrm{W}-\mathrm{O}(4)-\mathrm{P}(2)$	$160.2(5)$
$\mathrm{W}-\mathrm{C}(35)-\mathrm{O}(1)$	$178(1)$	$\mathrm{W}-\mathrm{C}(36)-\mathrm{O}(2)$	$177(1)$
$\mathrm{W}-\mathrm{C}(37)-\mathrm{O}(3)$	$175(1)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1)$	$115.5(4)$
$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(7)$	$119.1(4)$		

of absorption. The structure was solved by the direct method and refined by least-square cycles; all non-hydrogen atoms were refined anisotropically. The calculation was performed using the teXsan crystallographic software package of the Molecular Structure Corporation. The data collection and refinement parameters are collected in Table 1. Atomic positional parameters are given in Table 4. Selected bond lengths and angles are included in Table 5.

Acknowledgment

This research was supported by the National Science Council of the Republic of China.

References and notes

[1] (a) W.R. Cullen and J.D. Woolins, Coord. Chem. Rev., 39 (1981) 1; (b) T.S.A. Hor, L.-T. Phang, Z.-Y. Zhou and T.C.W. Mak, J. Organomet. Chem., 469 (1994) 253; (c) T.-J. Kim, K.-H. Kwon, S.-C. Kwon, J.-O. Baeg, S.-C. Shim and D.-H. Lee, J. Organomet. Chem., 389 (1990) 205; (d) I.R.B. Butler, W.R. Cullen, T.-J. Kim, S.J. Rettig and J. Trotter, Organometallics, 4 (1985) 972; (e) B.C. Ankianiec and G.B. Young, Polyhedron, 10 (1991) 1411; (f) A. Houlton, R.M.G. Roberts, J. Silver and R.V. Parish, J. Organomet. Chem., 418 (1991) 269; (g) T.S.A. Hor, S.P. Neo, C.S. Tang, T.C.W. Mak, K.W.P. Leung and R.J. Wang, Inorg. Chem., 31 (1992) 4510; (h) D.A. Clemente, G. Pilloni, B. Corain,
B. Longato and M. Tiripicchio-Camellini, Inorg. Chim. Acta., 115 (1986) L9; (i) T.S.A. Hor and L.-T. Phang, J. Organomet. Chem., 381 (1990) 121; (j) T.S.A. Hor, H.S.O. Chan, K.-L. Tan, L.-T. Phang and Y.-K. Yan, Polyhedron, 10 (1991) 2437; (k) T.S.A. Hor and L.-T. Phang, Polyhedron, 9 (1990) 2305; (1) V. Riera, M.A. Ruiz, F. Villafane, Y. Jeannin and C. Bois, J. Organomet. Chem., 345 (1988) C4; (m) T.S.A. Hor, L.-T. Phang, L.-K. Liu and Y.-S. Wen, J. Organomet. Chem., 397 (1990) 29; (n) S. Onaka, H. Furuta and S. Takagi, Angew. Chem. Int. Ed. Engl., 32 (1993) 87; (o) S. Onaka, Bull. Chem. Soc. Jpn., 59 (1986) 2359; (p) M.I. Bruce, I.R. Butler, W.R. Cullen, G.A. Koutsantonis, M.R. Snow and E.R.T. Tiekink, Aust. J. Chem., 41 (1988) 963; (q) B. Longato, G. Pilloni, G. Valle and B. Corain, Inorg. Chem., 27 (1988) 956; (r) T.M. Miller, K.J. Ahmed and M.S. Wrighton, Inorg. Chem., 28 (1989) 2347; (s) W.R. Cullen, S.J. Rettig and T.-C. Zheng, Organometalics, 11 (1992) 853; (t) W.R. Cullen, S.J. Rettig and T.-C. Zheng, Organometallics, 11 (1992) 277; (u) W.R. Cullen, S.J. Rettig and T.-C. Zheng, Organometallics, 11 (1992) 928; (v) W.R. Cullen, S.J. Rettig and T.-C. Zheng, Organometallics, 12 (1993) 688; (w) O.B. Shawkataly, F.W.B. Einstein, R.H. Jones and A.C. Willis, Can. J. Chem., 68 (1990) 2001; (x) S. Onaka, M. Otsuka, A. Mizuno, S. Takagi, K. Sako and M. Otonco, Chem. Lett., (1994) 45.
[2] (a) W.R. Cullen, F.W.B. Einstein, T. Jones and T.-J. Kim, Organometallics, 2 (1983) 714; (b) W.R. Cullen, F.W.B. Einstein, T. Jones and T.-J. Kim, Organometalics, 4 (1985) 346; (c) T. Hayashi and M. Kumada, Acc. Chem. Res., 15 (1982) 395; (d) M. Kumada, T. Hayashi, and K. Tamao, Fundamental Research in Homogeneous Catalysis, Plenum, New York, 1982; (e) Y. Ito, M. Sawamura and T. Hayashi, J. Am. Chem. Soc., 108 (1986) 6405; (f) Y. Ito, M. Sawamura and T. Hayashi, Tetrahedron Lett., 289 (1987) 6215; (g) W.R. Cullen and N.F. Han, J. Organomet. Chem., 333 (1987) 269; (h) W.R. Cullen, S.V. Evans, N.F. Han and J. Trotter, Inorg. Chem., 26 (1987) 514; (i) J.M. Brown, N.A. Cooley and D.W. Price, J. Chem. Soc., Chem. Commun., (1989) 458; (j) J.M. Brown and N.A. Cooley, Organometallics, 9 (1990) 353; (k) T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and K. Hirotsu, J. Am. Chem. Soc., 106 (1984) 158; (I) P. Kopf-Maier, H. Kopf and W. Neuse, Angew. Chem. Intl. Ed. Engl., 23 (1984) 456; (m) T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura and K. Yanagi, J. Am. Chem. Soc., 111 (1989) 6301.
[3] (a) W.-Y. Yeh, S.-B. Chen, S.-M. Peng and G.-H. Lee, J. Organomet. Chem., (1994), in press. (b) M.-A. Hsu, W.-Y. Yeh and M.Y. Chiang, J. Chin. Chem. Soc., in press.
[4] D.J. Darensbourg, D.J. Zalewski, C. Plepys and C. Campana, Inorg. Chem., 26 (1987) 3727.
[5] T.-J. Kim and S.-C. Kwon, J. Organomet. Chem., 426 (1992) 71.
[6] (a) S. Onaka, T. Moriya, S. Takagi, A. Mizuno and H. Ruruta, Bull. Chem. Soc. Jpn., 65 (1992) 1415; (b) S. Onaka, A. Mizuno and S. Takagi, Chem. Lett., (1989) 2073.
[7] K.K. Cheung, T.F. Lai and K.S. Mok, J. Chem. Soc. (A), (1971) 1644.
[8] I. Bernal, G.M. Reisner, G.R. Dobson and C.B. Dobson, Inorg. Chim. Acta, 121 (1986) 199.
[9] P.K. Baker, S.G. Fraser and P. Harding, Inorg. Chim. Acta, 116 (1986) L5.
[10] We have recently shown that treating $\mathrm{CpFe}(\mathrm{CO}) \mathrm{I}\left(\eta^{1}-\right.$ $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) with peroxide reagents affords $\mathrm{CpFe}(\mathrm{CO}) \mathrm{I}\left(\eta^{1}-\right.$ $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{P}(=\mathrm{O}) \mathrm{Ph}_{2}$) without oxidizing the iron center. M.-A. Hsu, W.-Y. Yeh, S.-M. Peng and G.-H. Lee, J. Chin. Chem. Soc., 41 (1994) 441.
[11] A.W. Gal and F.H.A. Bolder, J. Organomet. Chem., 142 (1977) 375.
[12] D.D. Schmidt and J.T. Yoke, J. Am. Chem. Soc., 93 (1971) 637.
[13] (a) M.G.B. Drew, P.K. Baker, E.M. Armstrong and S.G. Fraser, Polyhedron, 7 (1988) 245; (b) M.G.B. Drew and C.J. Rix, J. Organomet. Chem., 102 (1975) 467; (c) J.C. Dewan, K. Henrick, D.L. Kepert, K.R. Trigwell, A.H. White and S.B. Wild, J. Chem. Soc., Dalton Trans., (1975) 546; (d) M.G.B. Drew, J. Chem. Soc., Dalton Trans., (1972) 1329.
[14] S.Z. Goldberg and K.N. Raynond, Inorg. Chem., 12 (1973) 2923.
[15] M.A. Baker, A. Hills, D.L. Hughes and G.J. Leigh, J. Chem. Soc., Dalton Trans., (1989) 1417.
[16] (a) R.W. Wegman, A.G. Abatjoglou and A.M. Harrison, J. Chem. Soc., Chem. Commun., (1987) 1891; (b) A. Herbowski, T. Lis and E.A. Deutsch, J. Organomet. Chem., 460 (1993) 25.
[17] (a) J.M. Jenkins, J.R. Moss and B.L. Shaw, J. Chem. Soc. (A), (1969) 2796; (b) F.A. Cotton, Inorg. Chem., 3 (1964) 702; (c) G.T. Andrews, I.J. Colquhoun and W. McFarlan, J. Chem. Soc., Dalton Trans., (1982) 2353.
[18] T.T. Derencsényi, Inorg. Chem., 20 (1981) 665.
[19] D.P. Tate, W.R. Knipple and J.M. Augl, Inorg. Chem., 2 (1962) 433.
[20] J.J. Bishop, A. Dovsion, M.L. Katcher, D.W. Lichtenberg, R.E. Merrill and J.C. Smart, J. Organomet. Chem., 27 (1971) 241.
[21] SIR92: A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Cryst., submitted.
[22] TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985, 1992.

[^0]: * Corresponding author.

